Probing diffuse and translucent clouds* with interstellar hydrides**

David Neufeld Johns Hopkins University

Probing diffuse and translucent clouds* with interstellar hydrides**

David Neufeld Johns Hopkins University

*Gas that is mainly neutral ($x_e </\sim 10^{-4}$), not self-gravitating, and mainly cold (T </~ 80 K)

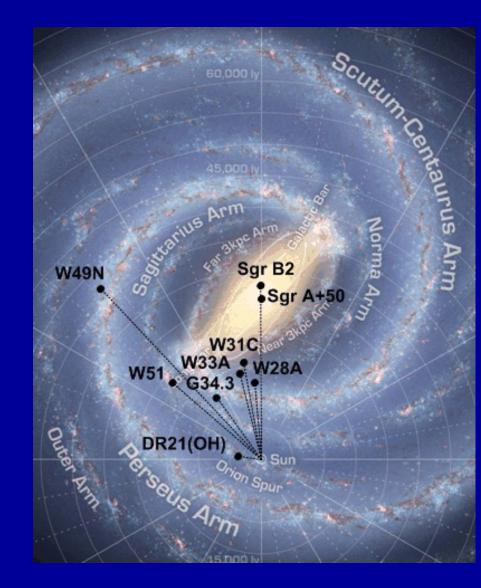
Dust attenuation can be significant, but the material is still affected (through grain photoelectric heating, photodissociation, photoionization) by the interstellar UV radiation field (emanating from hot stars throughout the Galaxy)

Molecules containing one heavy element atom with one of more hydrogen atoms

Recent discoveries of molecules in the diffuse ISM

Key facilities for submillimeter spectroscopy over the past 10 years

SOFIA (GREAT)


Recent discoveries of molecules in the diffuse ISM

OH+	Wyrowski et al. 2010	APEX
SH ⁺	Menten et al. 2011	APEX
H_2O^+	Gerin et al. 2010	Herschel
HF	Neufeld et al. 2010	Herschel
HCI+	de Luca et al. 2013	Herschel
H_2CI^+	Lis et al. 2010	Herschel
SH	Neufeld et al. 2012	SOFIA
ArH ⁺	Schilke et al. 2014	Herschel

All hydrides with high frequency rotational transitions that are unobservable from the ground or observable only from superb submillimeter sites

Absorption line observations

- We can use a very luminous region of massive star formation as a background THz continuum source
- This allows us to search for absorption by gas in foreground material
- A very "clean" experiment that provides robust measurements of molecular column densities

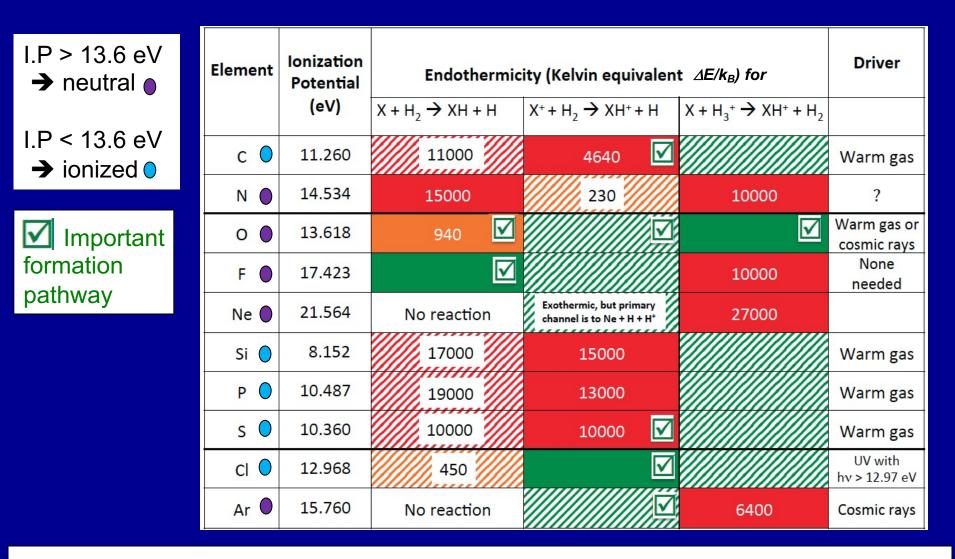
Hydrides in the diffuse interstellar medium

First diffuse ISM detection obtained in the past ten years

Molecule	Average abundance	Average abundance
	relative to H or H ₂	(fraction of gas
		phase elemental ^a)
CH	3.5×10^{-8}	1.3×10^{-4}
CH ₂	1.6×10^{-8}	6×10^{-5}
CH ⁺	6×10^{-9}	4×10^{-5}
OH	8×10^{-8}	8×10^{-5}
H_2O	2.4×10^{-8}	2.4×10^{-5}
OH ⁺	1.2×10^{-8}	2.4×10^{-5}
H_2O^+	2×10^{-9}	4×10^{-6}
H ₃ O ⁺	2.5×10^{-9}	2.5×10^{-6}
NH	8×10^{-9}	6×10^{-5}
NH ₂	4×10^{-9}	3×10^{-5}
NH ₃	4×10^{-9}	3×10^{-5}
HF	1.4×10^{-8}	0.4
SH	1.1×10^{-8}	4×10^{-4}
H_2S	5×10^{-9}	1.8×10^{-4}
SH ⁺	1.1×10^{-8}	9×10^{-4}
HC1	1.5×10^{-9}	0.004
HC1 ⁺	8×10^{-9}	0.04
H_2Cl^+	3×10^{-9}	0.02
ArH ⁺	3×10^{-10}	1×10^{-4}

Gerin et al, ARAA 2016

Using hydride molecules as diagnostic probes


Small molecules, especially hydride molecules, have simple formation mechanisms

→ carefully interpreted, they provide unique information of general astrophysical interest

Measuring the cosmic-ray ionization rate Tracers of the H₂ fraction Tracers of gas heated by shocks and turbulence

Different hydrides are highly specific probes, because small thermochemical differences lead to large differences in chemical behavior

Thermochemistry for different elements

Exothermic reaction of element in its main ionization state Endothermic reaction of element in its main ionization state

Exothermic reaction of element <u>not</u> in main ionization state

Endothermic reaction of element <u>**not**</u> in main ionization state

Using hydride molecules as diagnostic probes

Small molecules, especially hydride molecules, have simple formation mechanisms

→ carefully interpreted, they provide unique information of general astrophysical interest

Measuring the cosmic-ray ionization rate Tracers of the H_2 fraction Tracers of gas heated by shocks and turbulence

Different hydrides are highly specific probes, because small thermochemical differences lead to large differences in chemical behavior

Discovery of cosmic rays by Victor Hess

Victor F. Hess, center, departing from Vienna about 1911, was awarded the Nobel Prize in Physics in 1936. (New York Times, August 7, 2012, page D4)

Interaction with the interstellar gas

- High energy (E > 280 MeV) cosmic rays create γ -rays via $\begin{array}{c} \mathsf{CRp} + \mathsf{p} \rightarrow \mathsf{CRp} + \mathsf{p} + \pi^{0} \\ \pi^{0} \rightarrow \gamma + \gamma \end{array}$
- Lower energy cosmic rays ionize and heat the ISM CRp + H → CRp + H⁺ + e CRp + H₂ → CRp + H₂⁺ + e

The ionization of H and H₂ is followed by reactions leading to other molecular ions

What CRIR is inferred from observations of the ISM?

Cloud types in the ISM (Snow and McCall, 2006, ARAA)

Table 1 Classification of Interstellar Cloud Types

	Diffuse Atomic	Diffuse Molecular	Translucent	Dense Molecular
Defining Characteristic	$f^{n}_{H_{2}} < 0.1$	$f^n{}_{H_2} > 0.1 \ f^n{}_{C^+} > 0.5$	$f^{n}_{C^{+}} < 0.5 f^{n}_{CO} < 0.9$	$f^n_{CO} > 0.9$
A _V (min.)	0	~0.2	~1-2	~5-10
Typ. $n_{\rm H}$ (cm ⁻³)	10-100	100-500	500-5000?	>10 ⁴
Тур. Т (К)	30-100	30–100	15-50?	10-50
Observational	UV/Vis	UV/Vis IR abs	Vis (UV?) IR abs	IR abs
Techniques	H I 21-cm	mm abs	mm abs/em	mm em

Observations of H¹³CO⁺ Avg. $\zeta_p(H) = 1.1 \times 10^{-17} \text{ s}^{-1}$ (van der Tak & van Dishoeck 2000) Measuring the cosmic-ray ionization rate in diffuse *molecular* clouds with H₃⁺

In diffuse *molecular* clouds, H_3^+ production follows ionization of H_2

$$\begin{array}{c} H_{2} \xrightarrow{\text{Cosmic ray}} & H_{2}^{+} \xrightarrow{H_{2}} & H_{3}^{+} \\ \uparrow & & \downarrow \\ e, CO, O \end{array}$$

What CRIR is inferred from observations of the ISM?

Cloud types in the ISM (Snow and McCall, 2006, ARAA)

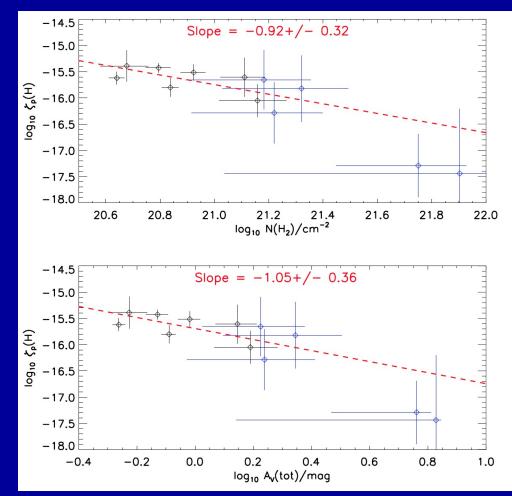
Table 1 Classification of Interstellar Cloud Types

	Diffuse Atomic	Diffuse Molecular	Translucent	Dense Molecular
Defining Characteristic	$f^{n}_{H_{2}} < 0.1$	$f^n{}_{H_2} > 0.1 \ f^n{}_{C^+} > 0.5$	$f^{n}{}_{C^{+}} < 0.5 \ f^{n}{}_{CO} < 0.9$	$f^n_{CO} > 0.9$
A _V (min.)	0	~0.2	~1-2	~5–10
Typ. $n_{\rm H}$ (cm ⁻³)	10–100	100-500	500-5000?	>10 ⁴
Тур. Т (К)	30-100	30–100	15-50?	10-50
Observational	UV/Vis	UV/Vis IR abs	Vis (UV?) IR abs	IR abs
Techniques	H I 21-cm	mm abs	mm abs/em	mm em

Observations of H_3^+ Avg. $\zeta_p(H) = 1.5 \times 10^{-16} \text{ s}^{-1}$ (Indriolo and McCall 2012)

Observations of H¹³CO⁺ Avg. $\zeta_p(H) = 1.1 \times 10^{-17} \text{ s}^{-1}$ (van der Tak & van Dishoeck 2000)

The CRIR in diffuse molecular clouds

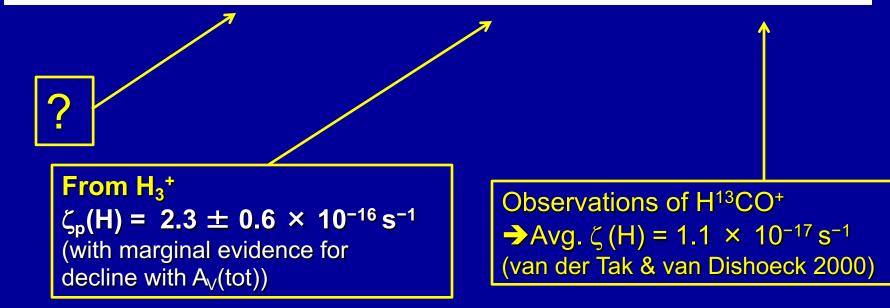

Variation with cloud N(H₂):

Black points: clouds with direct measurements of H_2 Blue points: clouds without direct measurements of H_2

Marginally significant evidence for a decline in $\zeta_p(H)$ with N(H₂) or A_V(tot)

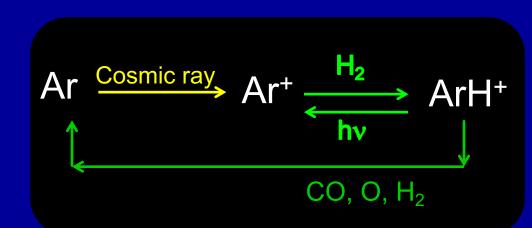
Effect of shielding?

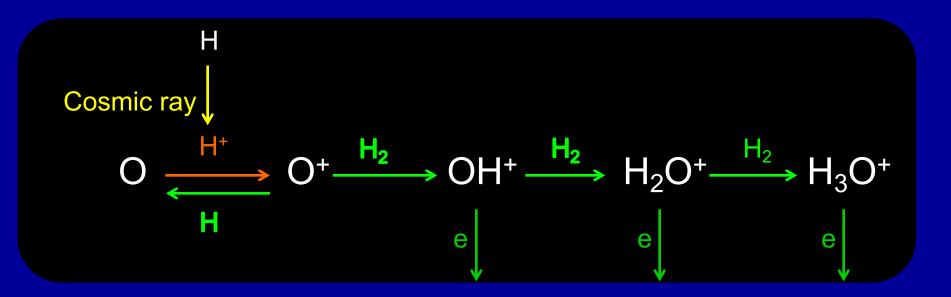
Consistent with the difference between the CRIRs derived for diffuse and dense molecular clouds (factor ~ 20)


Neufeld and Wolfire 2017

What CRIR is inferred from observations of the ISM?

Cloud types in the ISM (Snow and McCall, 2006, ARAA)


Table 1 Classification of Interstellar Cloud Types


	Diffuse Atomic	Diffuse Molecular	Translucent	Dense Molecular
Defining Characteristic	$f^{n}_{H_{2}} < 0.1$	$f^{n}{}_{H_{2}} > 0.1 \ f^{n}{}_{C^{+}} > 0.5$	$f^{n}_{C^{+}} < 0.5 f^{n}_{CO} < 0.9$	$f^n_{CO} > 0.9$
A _V (min.)	0	~0.2	~1-2	~5-10
Typ. $n_{\rm H}$ (cm ⁻³)	10-100	100-500	500-5000?	>10 ⁴
Тур. Т (К)	30-100	30–100	15-50?	10-50
Observational	UV/Vis	UV/Vis IR abs	Vis (UV?) IR abs	IR abs
Techniques	HI21-cm	mm abs	mm abs/em	mm em

Measuring the cosmic-ray ionization rate in diffuse *atomic* clouds with OH^+ , H_2O^+ , ArH^+

O and Ar are not ionized by UV radiation longward of the Lyman limit, so ArH^+ , OH^+ and H_2O^+ formation must be initiated by CR ionization

What CRIR is inferred from observations of the ISM? Cloud types in the ISM (Snow and McCall, 2006, ARAA)

Table 1 Classification of Interstellar Cloud Types

	Diffuse Atomic	Diffuse Molecular	Translucent	Dense Molecular
Defining Characteristic	$f^{n}_{H_{2}} < 0.1$	$f^{n}{}_{H_{2}} > 0.1 \ f^{n}{}_{C^{+}} > 0.5$	$f^n{}_{C^+} < 0.5 f^n{}_{CO} < 0.9$	$f^n_{CO} > 0.9$
A _V (min.)	0	~0.2	~1-2	~5-10
Typ. n_H (cm ⁻³)	10–100	100–500	500-5000?	>10 ⁴
Тур. Т (К)	30-100	30–100	15-50?	10-50
Observational	UV/Vis	UV/Vis IR abs	Vis (UV?) IR abs	IR abs
Techniques	H I 21-cm	mm abs	mm abs/em	mm em

From OH⁺, H₂O⁺ and ArH⁺ $\zeta_{p}(H) = 2.2 \pm 0.3 \times 10^{-16} \text{ s}^{-1}$ (at solar circle)

May change with new, improved measurements of the rate for $OH^+ + e \rightarrow O + H$ From H₃⁺ $\zeta_p(H) = 2.3 \pm 0.6 \times 10^{-16} \text{ s}^{-1}$ (with marginal evidence for

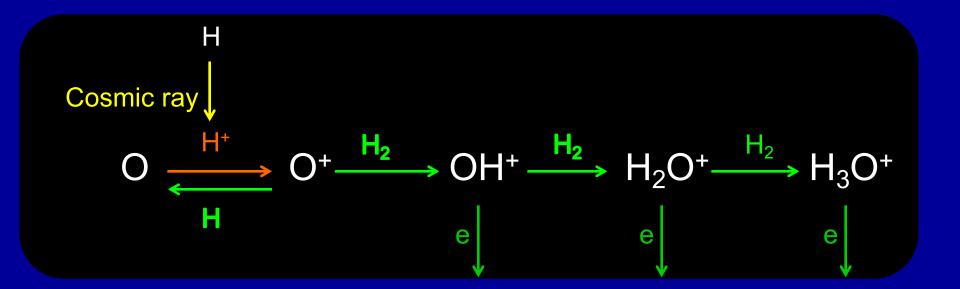
decline with A_V)

From HCO⁺ (van der Tak & van Dishoeck 2000) $\zeta_p(H) = 1.1 \times 10^{-17} \text{ s}^{-1}$

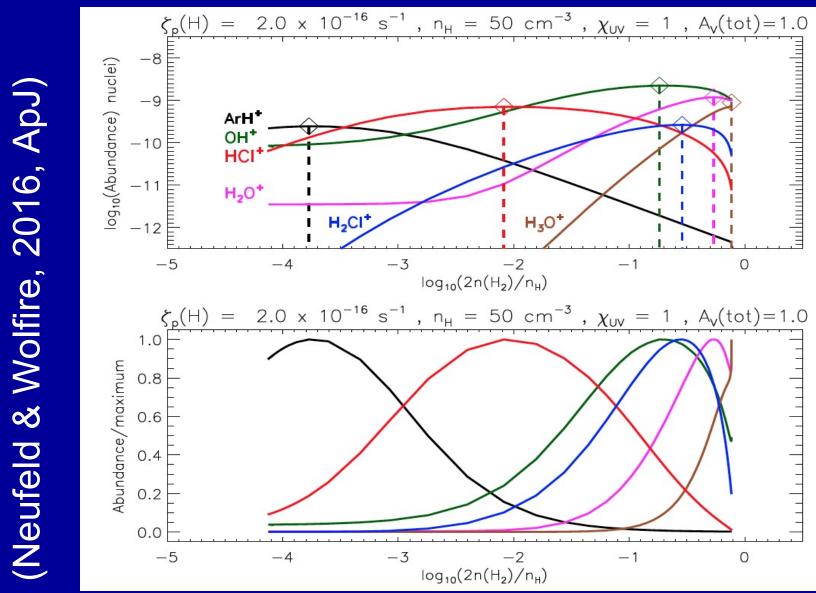
Using hydride molecules as diagnostic probes

Small molecules, especially hydride molecules, have simple formation mechanisms

→ carefully interpreted, they provide unique information of general astrophysical interest


Measuring the cosmic-ray ionization rate Tracers of the H₂ fraction Tracers of gas heated by shocks and turbulence

Different hydrides are highly specific probes, because small thermochemical differences lead to large differences in chemical behavior


Molecular ions also probe the H₂ fraction

Competition between dissociative recombination with electrons and H_2 abstraction reactions means that molecular ion abundances depend on the H_2 fraction

Example: OH^+/H_2O^+ is a decreasing function of $f(H_2)$

A combination of molecular ions can probe the distribution function for f(H₂)

Model predictions

Molecular ion abundances constrain models for the diffuse ISM

Bialy et al.

THE ASTROPHYSICAL JOURNAL, 885:109 (11pp), 2019 November 10

 $y_{\rm dec} = 0.08$ ArH-OH-H₂O $\mathbf{6} \quad \mathcal{M}_s = 0.5$ 4 2 $N({
m H})/(10^{21}{
m cm}^{-2}) pprox m/2$ $y_{
m dec} = 0.08$ $\mathcal{M}_s = 4.5$ 6 Δ $y_{\rm dec} = 0.8$ $\mathcal{M}_s = 4.5$ 6 4 2 -10 -9.5 -8.5 -8 -7.5 -9.5 -9 -8.5 -10.5 $\log N(\mathrm{H}_{2}\mathrm{O}^{+})/N(\mathrm{H})$ $\log N(\text{ArH}^+)/N(\text{H})$ $\log N(\mathrm{OH^+})/N(\mathrm{H})$

Figure 5. The grand PDFs of ArH⁺, OH⁺, H₂O⁺ as functions of N(H) (which is \propto to the number of clouds along the LoS, *m*.), for different (y_{dec} , M_s) combinations. All models assume $I_{UV} = 1$, $\zeta_{-16} = 4$, $\langle n \rangle = 30$ cm⁻³, $\langle A_V \rangle = 0.3$. In each panel, the three shaded regions correspond to the 68, 95, 99.7 percentiles about the median (at constant N(H)). The observations are indicated by dots with error bars.

Bialy et al. 2019

Molecular ion abundances constrain models for the turbulent ISM

The observed abundances favor a model with fairly strong turbulence-driven density fluctuations (middle panel)

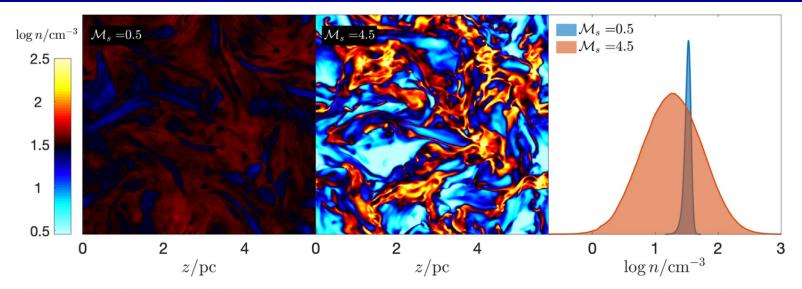


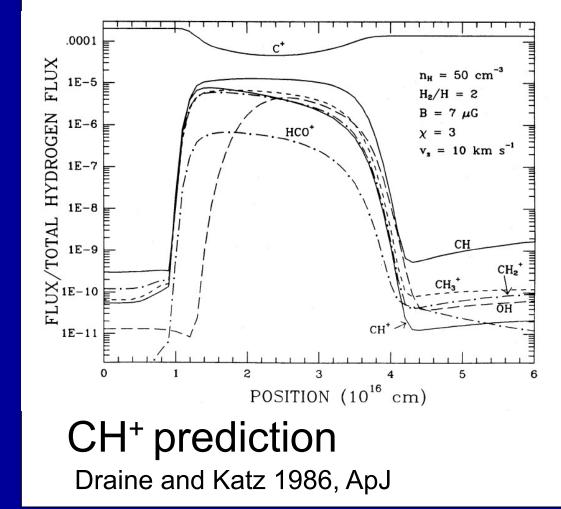
Figure 2. Density cuts through the $M_s = 0.5$ and 4.5 simulations (with $y_{dec} = 0.08$), and the corresponding density PDFs.

Using hydride molecules as diagnostic probes

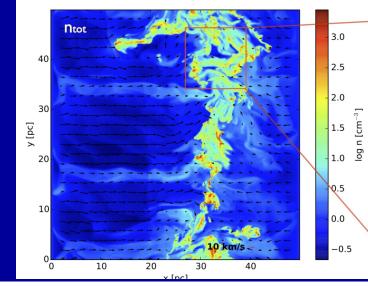
Small molecules, especially hydride molecules, have simple formation mechanisms

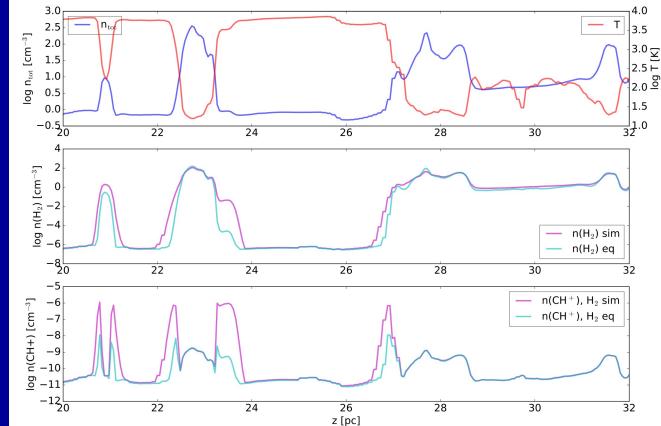
→ carefully interpreted, they provide unique information of general astrophysical interest

Measuring the cosmic-ray ionization rate Tracers of the H₂ fraction Tracers of gas heated by shocks and turbulence


Different hydrides are highly specific probes, because small thermochemical differences lead to large differences in chemical behavior

CH⁺, SH⁺ and SH as probes of "warm chemistry"


- None of C⁺, S⁺ nor S can react exothermically with H₂, but have reaction endothermicities of 4640K, 10⁴ K and 10⁴K respectively
- Observed CH⁺, SH⁺ and SH abundances are much greater than what would be expected at the average temperature of the diffuse ISM (Godard et al. 2012; Neufeld et al. 2015)
 - → Evidence for elevated temperatures or ion-neutral drift in material affected by the dissipation of turbulence.


CH⁺, SH⁺ and SH as probes of "warm chemistry"

The abundance of CH⁺ has long been recognized as anomalous, but recent observations of SH⁺ and SH corroborate the presence of a ubiquitous "warm chemistry."

Simulations of the turbulent ISM (Validivia et al. 2017)

Summary

New observations of hydrides, combined with sophisticated models for the chemistry of turbulent media, show great promise for advancing our understanding of the diffuse ISM

Upcoming talks in this session Paul Goldsmith: FIR fine structure line observations

Arshia Jacob: HyGAL: Characterizing the Galactic ISM with observations of hydrides

Michael Rugel: JVLA follow-up survey of OH and HI

Also, Michael Busch (poster): OH emission from the diffuse ISM